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Abstract. The electronic structure of Ag(001) with an adsorbed overlayer of Xe is calculated
in external electric fields of varying strength. The screening mostly takes place on the top
of the surface Ag atoms, with polarization of the Xe atom. The variation in the centroid of
the screening charge (the image plane) with field strength is studied, and it is found that the
adsorption of Xe reduces the non-linear response compared with that of the clean Ag surface.
The distribution of screening charge between the various atoms is found using a generalized
effective charge, and it is found that the screening charge on Ag atoms directly underneath Xe
is enhanced. The generalized effective charge gives the derivative of the force at the surface
with respect to the electric field, and the phenomena of field-induced chemisorption and field
desorption are discussed in these terms.

1. Introduction

In recent times there has been much interest in the effect of electric fields upon metal
surfaces especially when these surfaces have adsorbates upon them. The initial motivation
for this interest was to provide a greater understanding of field evaporation and desorption
and to look at field-induced adsorption (enhanced binding of adsorbates in the presence of
electric fields) [1, 2]. Much of the research in this area has also resulted from the need
to better understand the processes occurring in electrolytic cells where the large fields at
the electrodes affect the surface electronic structure. Recently, however, interest has been
generated in this subject by another application, the manipulation of single adsorbate atoms
using an STM tip [3]; clearly this has applications to the growing area of nanotechnology,
opening up the possibility of building wires and other components atom by atom. A related
discovery which is also fuelling the interest in these systems is the ‘atomic switch’ [4] in
which an adsorbate atom can be made to jump between the substrate and STM tip and then
back again by application of suitable fields.

Initial work on inert-gas adsorbates on metals was largely carried out by the field
emission community with the majority of calculations using simple models to look at field
emission for example [5–7]. More recently, first-principles calculations for adsorbates on
jellium surfaces have been carried out using the method of Lang [40]. These calculations
have led to an understanding of the effect of adsorbates and electric fields on the electronic
structure of metal surfaces as well as a better understanding of the energetics involved
in the processes that occur at these interfaces. The jellium calculations cannot however
reproduce effects arising from the atomistic nature of the charge density at the metal surface,
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such as field enhancement around the atoms. To stand any chance of getting a complete
understanding of the processes involved we need self-consistent full-potential calculations.
In this work we present the results of self-consistent calculations incorporating the full
crystal potential for Ag(001)c(2× 2)–Xe in the presence of an external electric field using
the embedding method [8] to take care of the semi-infinite substrate. This is a particularly
interesting system, because it has been suggested that Xe, unlike the lighter rare-gas atoms,
shows some chemisorption. Moreover Xe is widely studied in connection with the atomic
switch.

The embedding method [8] which we use is described in section 2. It handles situations
where a localized perturbation in an extended system reduces the symmetry of the system.
An example of this is in calculations like those presented here where the surface reduces the
symmetry of the perfect infinite crystal. It is clearly desirable to just solve the Schrödinger
equation in the region of interest which is usually in the vicinity of the perturbation—the
top few atomic layers. Evidently there is coupling between this region and the rest of the
extended system so we have to find a way of taking this coupling into account. Using
the embedding method, we can proceed by solving the Schrödinger equation explicitly
only in the surface region. The coupling of the wavefunctions in this region to those in
the bulk is incorporated by means of an energy-dependent non-local embedding potential
(defined on the boundary between the surface region and the bulk) derived from the bulk
Green function. What this means is that with the embedding potential included in the
surface region Hamiltonian, we can solve the Schrödinger equation just in this region,
whilst implicitly including the influence of the rest of the crystal and hence performing a
calculation for the true semi-infinite system.

In section 3 we present our results for the field-free electronic structure of the Xe–Ag
system, discussing the density of states, workfunction and self-consistent charge density.
Then in section 4 we show the effect of an applied external field on this electronic structure,
obtaining values for the position of the static image plane and making a comparison with
classical electrostatics. We shall also consider the field dependence of the static image plane
which is relevant to second-harmonic generation and its change with Xe adsorption. The

Region I
Region II (Bulk)

The Embedding Surface (S)

ns

Figure 1. The embedding geometry in a surface embedded Green function calculation, region I
being the surface layers and region II being the bulk crystal.
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concept of effective charge is being increasingly used as it provides a unique definition of
the charge on an atom and gives the force on the atom in an external electric field [9]. In
section 5 we introduce a generalization of this concept to arbitrary fields and use it to study
the effect of the applied electric field on the bonding between the Xe adsorbates and the Ag
substrate. The information gained is then used to consider the mechanisms responsible for
the effects apparent in the Eigler atomic switch.

2. Computational method

We partition the semi-infinite system into two parts, the surface (region I) and the substrate
(region II), as shown in figure 1. In the embedding method, a variational principle is given
for the energy in terms of a trial functionφ defined only in region I; all of the contributions
coming from matching this solution and the substrate wavefunctions are contained in the
embedding potentialG−1

0 . This variational principle (which is given in atomic units which
are used throughout this paper with ¯h = e = m = 1) is given by

E =
(∫

I

d3r φ∗Hφ + 1

2

∫
S

d2rs φ
∗ ∂φ
∂ns

+
∫
S

d2rS

∫
S

d2r′S φ
∗(rs)

[
G−1

0 − ε
∂G−1

0

∂E

]
φ(r′S)

)

×
(∫

I

d3r |φ|2−
∫
S

d2rS

∫
S

d2r′S φ
∗(rS)

∂G−1
0

∂E
φ(r′s)

)−1

. (1)

G−1
0 , which depends only on the substrate Green function, is evaluated at some trial energy

ε, and the energy derivative terms provide a first-order correction to give it at the right
energy. The embedding potential is in fact a generalized logarithmic derivative which
ensures that the solution in region I matches in amplitude and derivative onto the substrate
wavefunctions.

To proceed with minimizingE let us now expandφ in a set of basis functions:

φ(r) =
∑
i

aiχi(r). (2)

This leads to the following matrix equation for the coefficientsaj :∑
j

[
Hij + (G−1

0 )ij + (E − ε)∂(G
−1
0 )ij

∂E

]
aj = E

∑
j

Oij aj (3)

where

Hij =
∫
I

d3r χ∗i (r)Hχj (r)+
1

2

∫
S

d2rS χ
∗
i

∂χj

∂ns

(G−1
0 )ij =

∫
S

d2rs

∫
S

d2r′s χ
∗
i (rs)G

−1
0 (rs , r

′
s)χj (r

′
S) (4)

Oij =
∫
I

d3r χ∗i (r)χj (r).

Hij is the matrix element of the Hamiltonian in region I, and the surface derivative terms
ensure hermiticity.(G−1

0 )ij is the matrix element of the embedding potential which converts
the calculation for region I into one for region I embedded onto region II.
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When the energy lies within the bulk continuum it is convenient to work in terms of
the single-particle Green function rather than the wavefunctions. The Green function can
be expanded in terms of our basis functions:

G(r, r′;E) =
∑
ij

gij (E)χi(r)χ
∗
j (r
′) (5)

wheregij is given by the inhomogeneous matrix equation which can be written in matrix
form: ∑

k

[
Hik + (G−1

0 )ik − EOik

]
gkj (E) = δij . (6)

The energy derivative terms do not appear in equation (6) as the embedding potential is
evaluated at the energy at which the Green function is to be found. From the Green function,
we can evaluate the local density of states (LDOS) which is the charge density of states at
a particular energy:

σ(r, E) =
∑
i

|ψi(r)|2δ(E − Ei) (7)

or

σ(r, E) = 1

π
ImG(r, r;E + iε). (8)

With a knowledge of the LDOS, it then possible to calculate the charge density. This can
be done by integratingσ over the occupied states which we do using contour integration
making use of the analyticity ofG in the upper half-plane. We use a semi-circular contour
starting below the bottom of the valence band and ending up back on the real axis atEF :

ρ(r) = 1

π
Im
∫
C

dE G(r, r;E). (9)

We use linearized augmented plane waves (LAPWs) as our basis; these are very accurate
and convergence can often be achieved with as few as 50 LAPWs per atom. It is also very
convenient to formulate the full potential in terms of LAPWs. For exchange and correlation
we use the LDA [10] with the functional of Ceperley and Alder [11].

The embedding potential is obtained from a bulk (KKR) calculation using a relationship
between embedding and the reflection properties of the substrate [8]. It is important to
note that even though the KKR calculation employs a muffin-tin potential, in the surface
calculation we calculate the full potential including warping terms in the interstitial region,
non-spherical terms in the cores and non-planar terms in the vacuum. New developments
in embedding mean that it is now possible to treat the substrate on the same footing as the
surface region [12] and our future work will be carried out using these advances.

Details of the procedure that we use to iterate to self-consistency can be found in the
paper by Inglesfield and Benesh [8]. In our study of Ag(001)c(2× 2)–Xe we consider the
effect of an applied electric field. This is brought into the calculation through a boundary
condition on the solution of Poisson’s equation: dV/dz is set equal to the applied electric
field deep in the vacuum. Using this condition, when we iterate to self-consistency we
automatically get the surface screening charge, as the Fermi energy is fixed by the bulk and
the substrate acts as a reservoir of electrons. In this work we use the conventional definition
of the sign of the field; a positive field depletes the surface of electrons whereas a negative
field increases the electron density, tending to pull the electrons into the vacuum.
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3. The Ag(001) c(2× 2)–Xe electronic structure

The field-free Xe/Ag(001) electronic structure has been calculated as described in section 2
using the surface embedded Green function (SEGF) code [8] in a two-layer (one Xe layer
and one Ag layer) calculation. The calculations have been performed with the Xe atoms
adsorbed in the c(2× 2) structure at the ‘on-top’ sites. Adsorption at the on-top site is seen
experimentally [13] and the c(2×2) structure is chosen for computational convenience. The
atoms are situated such that the muffin tins touch, which results in a Xe–Xe spacing of 4.12Å
(a coverage of 5.89× 1014 atoms cm−2) and a Ag–Xe distance of 3.52̊A. Experimental
values [14] give the Xe–Ag distance as∼3.54 Å, in agreement with the distance that we
use. A basis of 221 LAPWs was used with three special points in the irreducible part of the
surface Brillouin zone. The charge density in a plane normal to the surface cutting through
the centre of the atoms is shown in figure 2.
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Figure 2. A surface plot of the Xe/Ag(001) valence charge density in a plane perpendicular to
the surface.

Figure 3 shows the density of states at0̄ in the different muffin tins of the system.
We see as expected that the atomic Xe 5p levels become broadened and split into a 5pz,
5px,y doublet on adsorption. This is caused by the reduction in symmetry of the Xe atom
when it is brought into the system. There are two possible mechanisms for this splitting:
the interaction between the adsorbed Xe atom and the surface atoms, and two-dimensional
band-structure effects within the Xe overlayer. We have identified the lower peak as being
due to 5pz and the upper peak as being due to 5px,y . There is a third peak in between the
two Xe 5p peaks; we have investigated this peak and have concluded that it is due to Ag
orbitals penetrating into the Xe muffin tins. Comparing the DOS with our bulk Ag band
structures, we have found that the peak is associated with a minimum in the band with11

symmetry at 0.95 au.
In experimental work, the Xe 5p level is seen to split into 5p1/2 and 5p3/2 levels. This

is caused by spin–orbit coupling which we do not include. The 5p3/2 level splits further
into |mj | = 1/2 and |mj | = 3/2 levels [15–18, 20] due to the reduction in symmetry in
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Figure 3. The p-resolved density of states inside the Xe muffin tins at0̄.

analogy with the splitting observed in our calculations. The mechanism responsible for
the splitting of the 5p3/2 peak which affects the energetic ordering of the|mj | = 1/2 and
|mj | = 3/2 states has caused controversy as we mentioned earlier. Initially, both Ag–Xe
and Xe–Xe interactions were put forwards as the mechanism causing the splitting, but later
work identified Xe–Xe interactions as being the dominant effect [16, 18, 21–23]. This is in
agreement with the work of Oxinos and Modinos [19] who in model calculations for singly
adsorbed atoms saw an observable splitting due to the substrate only when the p level was
below the valence band of the metal. From this, we would not expect to see splitting in
calculations for Xe as the 5p orbital lies within the valence band of the metal substrate.
To investigate the origin of the 5p splitting, we have performed calculations with the Xe
overlayer displaced into the vacuum from the equilibrium position. If the splitting is due
to Xe–Ag interactions then it should be affected by this displacement. What in fact we see
in figure 3 is that the only effect of this displacement is to shift both of the peaks up in
energy by the same amount. This suggests that the splitting is due to Xe–Xe interactions,
in agreement with the general consensus in the literature. The splitting of order 1.3 eV
which we observe is larger than that reported in the literature (for example 0.96 eV for
Xe–Pt(111) [18]), but Cassuto and Ehrhardt [20] have shown that the splitting becomes
larger as the Xe–Xe separation is reduced; the separation which we use in our geometry
is smaller than those previously published (for example in the study of Xe–Pt previously
mentioned, the Xe–Pt separation was 4.8Å) and this explains why our splitting is greater
than those seen in previously published work.

The Xe 5p peaks in our calculation are situated at around 4.2 eV belowEF , whereas
spin-polarized photoemission data give them at approximately 5.5 eV belowEF [16]. This
value is however in agreement with otherab initio calculations [24] and it can be explained
in terms of the fact that we use the LDA without self-interaction corrections, and that we
would expect these corrections to be substantial for the localized Xe wavefunctions. These
corrections would lower the energy and hence our Xe states are at too high an energy.

Turning now to ground-state properties, our calculations give a workfunction of 4.21 eV,
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a reduction of 0.46 eV compared to the value from our calculations for a clean Ag surface,
for which φ = 4.67 eV (in extremely good agreement with results from photoemission
experiments [25]). The reduction of 0.46 eV in the workfunction is in agreement with
experimental values which give the shift as 0.46± 0.06 eV [26, 27].

The reduction in workfunction occurs because of the interaction between the Xe
monolayer and the substrate which causes a polarization of the adsorbate and a reduction
in the surface potential barrier. The polarization of the adsorbate can be understood by
considering the LDA picture put forward by Lang [40]. The electron density on the surface
side of the adsorbate is higher than on the vacuum side leading to a deeper exchange–
correlation hole which is more effective in lowering the energy of the adsorbate electrons.
This means that it is energetically favourable for the adsorbate electrons to be in this region
and hence the adsorbate becomes polarized.

Recently, support for Lang’s LDA picture of rare-gas adsorption has appeared in the
literature. The LDA approach leads to an exponential decay in the attractive force rather
than the power-law dependence that the van der Waals mechanism would display. Helium
diffraction experiments by Kirsten and Rieder [28] have demonstrated that the interaction
potential of He with Pt(110)–(1× 2) has an exponentially decaying attractive component
when the He atom is close to the Pt surface.

4. Screening of applied electric fields

When an electric field is applied to a metal surface, the electrons respond by screening the
field and prevent it from penetrating into the metal. The main aim of this work is to study
this screening and to say what (if any) effect it has on the interaction between the adsorbates
and the substrate. In addition to this motivation, we can use the screening charge to deduce
the position of the centre of gravity of the screening charge and the field dependence of this
quantity [29] which has ramifications for second-harmonic generation (SHG) as we shall
see later in this section.

Table 1. The induced screening charge densityρind and the induced screening charge density
corresponding to perfect screeningρperfect.

E ρind ρperfect

−0.010 −0.000 774 −0.000 795
−0.005 −0.000 388 −0.000 398

0.005 0.000 387 0.000 398
0.010 0.000 775 0.000 795
0.020 0.001 553 0.001 591

We have applied fields ranging from−0.01 au to 0.02 au (with the sign convention
as defined in section 2) to the system† and evaluated the total induced screening charge at
each field strength. The calculation gives perfect screening (which corresponds to a surface
charge ofE/(4π) per unit area) to within 2% as can be seen in table 1.

When we consider the distribution of the screening charge, we find an extremely rich
structure. Initially we concentrate on the planar-averaged screening charge which is defined

† Where one atomic unit(1 au) = 5.14× 1011 V m−1.
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Figure 4. The planar-averaged screening charge forE = 0.005, 0.01 and 0.02 au. The bulk is
to the left of the figure and vacuum is to the right.
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Figure 5. A contour plot of the screening charge induced by a field of 0.01 au. The plot is on
a plane in the same orientation as figure 2. The solid contours show where electronic charge
is lost; the dotted ones show where electronic charge is gained. The Xe atom is centred at
z = −2.75 au, the Ag atoms atz = 3.9 au.

as follows:

ρind(z) = 1

A

∫
A

d2r ρind(r) (10)



The effect of electric fields on Ag(001) c(2× 2)–Xe 7785

whereρind(r) is ρE 6=0(r)− ρE=0(r) andA is the area of the unit cell. We see, as shown in
figure 4, that just outside the Ag atoms a layer of screening charge builds up which prevents
the field from entering the metal. Around the Xe atom the planar-averaged screening charge
has a dipole-like profile. If we now consider the contour plot of the screening charge shown
in figure 5 the rich structure of the screening charge begins to reveal itself. Again as with
the planar-averaged screening charge, we see a layer of screening charge sited just above
the metal atoms but now we see that it bends around the ion cores as observed by Aers
and Inglesfield [29, 30]. These authors initially postulated that this was due to the repulsive
pseudopotential of the Ag core, but it later became apparent that the same effect was
observed in Al where the pseudopotential is attractive, so clearly more thought has to go
into obtaining the mechanism behind this effect. There is also a very interesting polarization
effect inside the ion cores which was also observed by Aers and Inglesfield for clean Ag
and Al.

When we look at the Xe atoms, we again see the dipole-like polarization which was also
evident in figure 4 but now the rich structure contained within this polarization becomes
apparent. From figures 4 and 5 we can see that there is some redistribution of charge in the
system and we see that the Xe becomes polarized (in fact more polarized if we go back to
Lang’s picture of adsorption). What we cannot tell, however, is whether there is any charge
transfer (and hence field-induced chemisorption). We will address this problem in the next
section.
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Figure 6. Densities of states for zero applied field and for a 0.01 au applied field at0̄.

It is informative to look at the effect of applied fields on the DOS (figure 6) on each atom
(where by ‘Xe DOS’ for example we mean the local density of states integrated through
the Xe muffin tin), as this gives further insight into the nature of the screening. Looking at
the top two plots which show the Xe DOS for zero field and a 0.01 au field, we can see
that applying a positive field shifts all of the Xe states upwards in energy. Turning to the
lower two plots which show the Ag DOS, it seems that there are no shifts in the Ag DOS.
This is intuitively correct as the field is screened near the top of the Ag atoms whereas it
is essentially unscreened in the Xe monolayer. However, on closer examination it becomes
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clear that there is a peak at about 0.07 au which shifts to 0.08 au when the field is applied.
This peak in fact corresponds to the Xe 5pz state, which extends slightly into the Ag layer
and appears in the Ag DOS. So by considering the densities of states, we again come to
the conclusion that the screening in the system is so good as to be virtually perfect for the
Ag atoms, whereas the applied field shifts the states of the adsorbate up in energy.

A useful measure of the screening charge is the image plane (z0) which is the centre of
gravity of the induced screening charge. By considering how the image plane varies when a
field is applied we can find out information about how the screening charge is redistributing
itself when the field is varied. We can obtain the position of the image plane using the
planar-averaged induced charge densityρind. We can then find the position ofz0 (measured
relative the jellium edge, i.e. half an interatomic spacing from the last atomic plane of Ag):

z0 =
(∫

dz zρind(z)

)/(∫
dz ρind(z)

)
. (11)

Now previous calculations [29] for clean Ag surfaces have reported that the position of the
image plane depended linearly on the applied electric field with the following dependence:

z0(E) = −0.97+ 8.83E (in atomic units). (12)

We find that the adsorption of a monolayer of Xe modifies this behaviour, and introduces a
quadratic dependence (figure 7) which can be fitted by

z0(E) = −5.29+ 3.19E − 123.84E2 (in atomic units). (13)

The field dependence ofz0 corresponds to non-linear screening, even though the total
screening charge is proportional to the applied field from perfect screening. For a low-
frequency field, it contributes to the longitudinal second-harmonic current normal to the
surface [31]. The coefficient ofE is proportional to the quadratic response and so we can
see from equations (12) and (13) that adsorption of a monolayer of Xe reduces this response,
and hence the second-harmonic signal.

Using the fits obtained above (equations (12) and (13)) we can obtain the low-field limit
for the position of the image plane and so can estimate the adsorbate-induced shift of the
image plane. The classical shift of the image plane1z caused by a thin dielectric layer of
thicknessd and static dielectric constantε is [32]

1z = −ε − 1

ε
d. (14)

Our dielectric layer is 7.79 au thick, and if we use the static dielectric constant for solid Xe,
ε = 2.09 [33], we find from (14) that the classical shift of the image plane is−4.06 au which
agrees extraordinarily well with the distance of−4.31 au that we find in our calculation.
This means that apparently just a single monolayer of dielectric exhibits bulk dielectric
properties!

5. Effective charge and screening charge

We now present a generalization of the concept of effective charge [34] to arbitrary fields
and use it to study the nature of the bonding of the Xe adsorbate to the Ag substrate and
the effect of applied fields on this bonding. The generalized effective charge is related to
the force on individual surface atoms due to applied fields and it allows us to associate
screening charge with individual atoms. In the limit of low fields, the force normal to the
surface on atoms of typei in a field is [34–37]:

Fi = q∗i E (15)
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Figure 7. The quadratic relationship between the applied field and the position of the image
plane. The circles are the results of our calculation; the line is a quadratic fit to the data.

whereq∗i is the effective charge andE is the unscreened external electric field. The effective
charge also gives the change in the surface dipole contribution to the workfunction when
atoms of typei are displaced by dzi perpendicular to the surface [34, 37]:

∂φ

∂zi
= −4πq∗i

Ai
(16)

whereAi is the area per atom. (In this section, we take positivez as pointing out of the
surface to remain consistent with our other paper [9].)

Although the effective charge gives us the force on the atoms in a field, the definition
in (16) in terms of change in surface dipole moment shows that we cannot necessarily
associate it with charge transfer between atoms. As we shall see later, a van der Waals
treatment of the distance dependence of the Xe dipole can lead to an effective charge in
good agreement with our calculations without any charge transfer as such. However, the
effective charge does have properties associated with real charges as well as giving the
force. For example, the sum of the effective charges is zero; otherwise there would be a
force on a surface in a uniform field linear in the field (in the low-field limit) which is not
the case. Moreover, charge transfer is an arbitrary quantity, whereas the force on a surface
atom is well defined. We should emphasize that (15) gives the total force on an atom in the
field including all quantum mechanical effects and self-consistent screening. It is not just
classical electrostatics.

Let us now consider the generalization of the concept of effective charge to allow us to
calculate the force on an atom at the surface in an arbitrary field, restricting ourselves to
metallic surfaces for which perfect screening applies. We use an extension of the classical
argument for finding the force on the plates of a parallel-plate capacitor. One plate is the
surface, whilst the other is an arbitrary electrode. The potential of the electrode is initially
V with respect to the surface which is fixed at zero potential. On taking charge dq from
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the electrode to the surface, the energy change of the system is dU , with

V = −∂U
∂q
. (17)

If we now move the atoms of typei by dzi , the potential across the capacitor changes in
just the same way as the workfunction changes in the field-free case. From (17),

∂V

∂zi
= − ∂2U

∂q ∂zi
. (18)

But −∂U/∂zi is the total force on the atoms of typei, so (18) becomes

∂V

∂zi
= Ni ∂Fi

∂q
(19)

whereFi is the force on each atom of typei, and there areNi of these atoms on the entire
surface. Replacing dq by the change in electric field dE between the plates, we obtain a
relationship between∂Fi/∂E and∂V/∂zi :

∂Fi

∂E
= Ai

4π

∂V

∂zi
. (20)

We can easily evaluate the right-hand side of this expression by performing an electronic
structure calculation in the presence of an electric field. We simply shift the atoms of typei

by dzi and see how much the vacuum potential shifts. It is natural to define∂Fi/∂E as the
chargeQi on atomi which can be determined very straightforwardly from the right-hand
side of equation (20). The difference in sign between (16) and (20) arises becauseV is
the electrostatic potential whilstφ is an electron potential energy. AgainFi includes all
quantum mechanical effects.

The effective chargeQi is related to the change in dipole moment of the surface charge
when atoms of typei are moved. Keeping the potential inside the solid fixed, Poisson’s
equation tells us that the change in potential outside the surface when atomsi are moved a
distance dzi is given by

∂V

∂zi
= 4π

A

∫ ∞
−∞

dz
∫
A

d2r z
∂ρ(r)

∂zi
(21)

whereρ(r) is the charge density and the two-dimensional integral is over the unit cell with
areaA. From the definition of effective charge it follows that

Qi = 1

Ni

∫ ∞
−∞

dz
∫
A

d2r z
∂ρ(r)

∂zi
(22)

whereNi is the number of atoms of typei in the unit cell. A sum rule immediately follows
from this. If we move all of the atoms byδz, the change in charge density is just a shift in
the whole system, so

δρ(r) = δz
∑
i

∂ρ

∂zi
= ρ(z− δz)− ρ(z) (23)

and∑
i

NiQi = 1

δz

∫ ∞
−∞

dz
∫
A

d2r z [ρ(z− δz)− ρ(z)] =
∫ ∞
−∞

dz
∫
A

d2r ρ(r). (24)

Hence we obtain∑
i

NiQi = Q (25)
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whereQ is the total charge per surface unit cell—this is zero if there is no electric field,
and is the screening charge in the presence of a field.

Let us separateQi into the zero-field effective chargeq∗ and a term linear in the applied
field—in other words, we consider the first two terms in a Taylor series:

Qi = q∗i + αiE. (26)

Then from equation (20) we can see that the force on atomi is given by

Fi = q∗i E +
1

2
αiE

2. (27)

Summing over all atoms we are left with the quadratic term only as we know from simple
electrostatics. So the second term in (26) allows us to associate screening charge with
individual atoms. To findQi , all we have to do is move the relevant atom and obtain the
shift in the vacuum level from our self-consistent calculations.

6. Effective charge and Xe–Ag bonding

We have calculated the generalized effective chargeQi for the Xe–Ag system for different
applied electric fields as shown in table 2. Firstly we consider the field-free case where
we see thatq∗Xe is −0.090|e|. This is largely counterbalanced by the effective charge on
the Ag atom directly below the Xe,q∗Ag1 = +0.086|e|. This demonstrates the effectiveness
of metallic screening of perturbations due to the adsorbate and is in agreement with the
description given by Kreuzer [38] with the adsorbate interacting predominantly with the
atom above which it is adsorbed.

Table 2. The effective charge on each of the atoms as a function of the applied electric field.
The Xe atoms are adsorbed above atom Ag1.Q is the screening charge obtained from the sum
of the effective charges, andQperfect is the screening charge corresponding to perfect screening.

E QXe QAg1 QAg2 Q Qperfect

0.000 −0.0932+ 0.0858 + 0.0017 −0.0057 + 0.0000
0.005 −0.0893+ 0.0994 + 0.0082 + 0.0183 + 0.0242
0.010 −0.0840+ 0.1149 + 0.0157 + 0.0466 + 0.0482
0.020 −0.0691+ 0.1359 + 0.0312 + 0.0980 + 0.0966

These calculated effective charges suggest that there is some chemisorptive nature to the
Xe–Ag bond and Mingoet al [39] attributed this to the overlap of the broadened unoccupied
Xe 6s orbital with the Fermi energy which leads to partial occupation of this orbital. These
authors found a transfer of−0.1|e| of real charge from the substrate to the Xe, in good
agreement with the effective charge which we have calculated. Lang [40] has already
shown that an LDA approach works for adsorption of rare-gas atoms on a jellium surface
and stressed that the overlap of the Xe electron distribution with the substrate electron
gas is important for bonding. However, we must remember that the effective charge is
not necessarily a real charge, even though it gives the force on an atom in an electric
field. An effective charge corresponds to a variation in surface dipole moment with atomic
displacement and this can occur by a purely van der Waals mechanism.

A van der Waals treatment predicts that the dipole moment varies as(zXe−zVdW)
−4 [40],

wherezVdW is the position of the van der Waals reference plane. This means that as we move
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the adsorbate into vacuum, the dipole moment decreases, which corresponds to negative
effective charge on the Xe atoms. This approach gives

q∗Xe =
Ai

π

1φ

(zXe− zVdW)
. (28)

Taking z − zVdW = 4.2 au [41], Ai = 60.7 au and using the change in workfunction
on Xe adsorption obtained from our self-consistent calculations (1φ = −0.46 au) yields
an effective charge of−0.08|e| which is in excellent agreement with our first-principles
calculations. This agreement is surprising, because our value ofq∗ is found in a LDA
calculation of dipole moments, whereas the van der Waals values come from non-local
exchange–correlation effects.

We now turn to the effect of an applied electric field. From table 2 we see that the sum
of the generalized effective chargesQ agrees well with perfect screening. The screening
charge is predominantly on the Ag atoms, with the Ag atoms sitting under the Xe adsorbates
responding almost twice as much to the applied field as the Ag atoms not covered by the
Xe atoms. There are several different ways of interpreting this effect. We would expect the
valence wavefunctions of the Ag atoms under the Xe to penetrate further into vacuum as
the electrons see a reduced tunnelling barrier at the adsorbed Xe [42]; this would lead to
them responding more strongly to the field. Figure 8 shows the Ag valence charge density
along lines through the centre of the Xe atoms and in between the Xe atoms; it shows that
at the Xe atoms, the Ag valence wavefunctions penetrate much further into the vacuum than
in the absence of Xe atoms and so supports this idea.
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Figure 8. The Ag valence charge density plotted on lines through the centre of the Xe adsorbate
and in between the Xe adsorbates to show the effect of the adsorbate on the penetration of the
wavefunction into the vacuum. The Ag charge density is separated from the Xe charge density
by plotting the charge density for electrons near to the Fermi energy (which is at 0.25 au) where
the contribution from Xe is negligible.

As the field increases, the generalized effective charge of the Xe atom becomes less
negative. This may be connected with the charge transfer found by Kreuzer and co-workers
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in model studies of inert-gas adsorbates in an electric field—the electric field raises the
energy levels on the adsorbate, which consequently tend to empty. This charge transfer
has been linked by Kreuzer to the increased bonding of inert-gas atoms to metal surfaces
in the presence of electric fields—a phenomenon which they have termed field-induced
chemisorption [38].

7. Field desorption and the atomic switch

To study the processes occurring in field desorption, the results shown in table 2 have been
extended for fields up to 0.06 au, and are fitted by the formula

QXe = −0.097+ 1.165E + 23.147E2 (in atomic units). (29)

It then follows from equation (20) that

FXe = −0.097E + 0.0583E2+ 7.715E3 (in atomic units). (30)

From this we can see that for small positive fields (which push electrons away into the
bulk) the Xe atoms are pushed towards the substrate. Initially, this force increases with
increasing field but then begins to decrease, changing sign at around 0.08 au after which the
field pulls the Xe atom away from the surface into the vacuum. It is important to emphasize
again that this is the total force on the Xe atom at a fixed position (in this case the zero-
field equilibrium position) including all field-induced bonding and charging effects. What
actually happens at a real surface is that the adsorbate atom moves under the influence of
the force until there is no net force on the atom; we should also note thatE is the uniform
field above the surface, but all local field enhancement is included implicitly in our method.

The negative force pushing the Xe towards the surface at low fields is associated with
the field-induced chemisorption mentioned above. The potential energy curves of Nathet al
[43] for inert-gas atoms adsorbed upon metal surfaces show a force towards the surface at
low fields in agreement with this study, along with a deepening of the adsorption potential
well which moves closer to the surface. This is field-induced chemisorption. Nathet al also
saw that as the field is increased, the force on an atom at the equilibrium position changes
sign in agreement with our work. Due to the rapid variation ofFXe at largeE we expect that
a field somewhat larger than 0.08 au (4.1 V Å−1) will overcome the van der Waals and other
bonding forces to strip the adsorbed atom from the surface. This is certainly an overestimate
of the field required for field evaporation as we have not considered non-adiabatic effects
such as the ionization reaction Xe→ Xe+ + e−.

A subject that has seen a great deal of attention in recent times is the manipulation of
adsorbates with electric fields. In particular we consider the Eigler switch [4], in which the
application of a positive field to an STM tip causes Xe atoms to jump from a Ni surface
to the STM tip. Under typical working conditions, the tip is biased to+0.8 V and is
situated about 4̊A from the surface. This corresponds to an electric field of−0.004 au
using our convention for signs. Now it can be shown from binding energy curves that the
force needed to remove Xe adsorbed on Ag is about 100–150 meVÅ−1 [39, 45]. From our
calculations, the force due to the fields in the work of Eigleret al is only about 4×10−4 au
(20 meV Å−1). What becomes clear from these results is that the desorption mechanism
cannot be purely adiabatic. The most important effect is probably thermal activation due
to the non-adiabatic vibrational heating from inelastic electron tunnelling [44]. However,
the force on the effective charge does play an important role insofar as it produces a bias-
dependent shift of the potential well of the Xe adsorbate on the STM tip relative to the
well for adsorption on the surface. This means that the energy required (from the inelastic
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tunnelling effects) to make the atom jump between the wells becomes less and so can occur
with less thermal activation. From this we can see that the bias required to make the atom
jump is determined by the interplay between the shift of the adsorption well and the energy
supplied by the inelastic tunnelling effects.
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